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An optical communications demonstration program designed to demonstrate 2.5 bits
of information transfer per single detected photon is described. The program was divided
into four demonstration phases representing increasing degrees of complexity. The
theoretical analysis of each of the phases is presented where it is shown that the
2.5-bit/detected photon goal can be achieved. The experimental results of phase I, which
are in excellent agreement with the theory, are also presented,

I. Introduction

As deep space missions reach to greater distances and the
scientific objectives of such missions become more ambitious
the requirements for greater communication capability will
continue to challenge the communications engineer. Past chal-
lenges have resulted in the transition from the S-band to the
X-band frequency range, the increase in spacecraft antenna
size and the arraying of multiple ground receive stations.
Indeed the physical appearance of the Voyager-class spacecraft
is completely dominated by the high-gain communications
antenna. One cannot help wondering how much further such
dimensions can be extended before reaching the limits of
practicality.

One solution to this dilemma is to utilize optical fre-
quencies for communications (Ref. 1). At optical frequencies
the aperture determining components are usually measured in
centimeters rather than meters. Furthermote, with the emer-
gence of semiconductor injection lasers, one can reasonably
anticipate that rugged, efficient solid-state optical sources will
be available in the near future (Ref. 2). But even more signifi-
cant is the fact that for receivers employing direct photon
detection the communications channel capacity is extremely

large, with only a moderate amount of optical signal energy.
This point was discussed by Pierce in 1978 (Ref. 3) where he
described a channel capable of conveying tens of bits of
information for each signal photon. This might seem quite
surprising since the-classical (nonquantum) theory predicted a
limit of only one nat of information per photon (1 nat = 1.44
bits). However, Pierce was really illuminating and expanding
upon predictions that had been made some time earlier
(Refs. 4-7) and which have now stood the test of time.

Although channel capacity is recognized as the ultimate
throughput limit of the channel, it leaves unanswered the
question of how one can approach that limit in practice. For
this reason a number of studies were initiated to find good
modulation and ceding schemes for the optical channel, It is
now known that by properly matching these two areas, trans-
mission of up to 5 bits/photon is achievable with today’s
technology (Refs. 8, 9). All of these schemes employ M-ary
pulse position modulation and either Reed-Solomon codes or
interleaved, short-constraint-length (multiple) convolutional
codes. Furthermore, achieving energy efficiencies greater than
5 bits/photon is impeded only by the present-day limits of
signal processing complexity, limits which are rapidly receding
with the onslaught of VLSI technology.
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Thus far only theoretical performance calculations have
been carried out. The results of such calculations depend very
heavily on the validity of the mathematical models used to
describe the system. For this reason a demonstration program
was initiated to prove out the validity of the models and with
the prime objective of demonstrating reliable communications
at a data rate of at least 100 kbps and an energy efficiency of
2.5 bits/detected photon. (Reliable communications was
defined as the Voyager threshold bit error rate of 5 X 1073))
The 2.5-bit/photon number was selected because it is comfort-
ably above the classical limit but sufficiently small so that the
system complexity would not get out of hand. After flushing
out the problems at this design point a more ambitious pro-
gram to demonstrate 5 or more bits/detected photon will be
initiated.

In the next section we will describe the 2.5-bit/detected
photon demonstration program and show how it has been
divided into four program phases. In Section III we will
present a theoretical analysis of the system and show that the
primary demonstration goal can theoretically be achieved. This
analysis is substantially ‘more detailed than previous studies
which tended to ignore such things as photomultiplier tube
gain dispersion and thermal noise in the predetection pulse
amplifier. In Section IV we will then describe the experimental
results of the first phase of the program which show that the
detector noise models used in the analysis are comfortably
close to reality. Finally, the results are summarized and dis-
cussed in Section V.

ll. General Description of the 2.5
Bit/Detected Photon Program

A block diagram of the demonstration system is shown in
Fig. 1. The heart of the optical portion of the system consists
of a gallium arsenide semiconductor injection laser and a direct
detection photomultiplier tube. The GaAs laser diode is a
high-quality, single-spatial-mode device operating at 0.85 um
and has the reliability and durability characteristic of solid-
state devices. The light emitted from the laser is passed
through some elementary optics followed by 70-100 dB of
neutral density filters (attenuators) which simulate space loss.
The attenuated optical signal is then applied to a photomulti-
plier tube (PMT) detector which has a high internal gain
(>106), a quantum efficiency around 20% and, with moder-
ate cooling, an extremely low dark current. Of course, to
eliminate stray laboratory light, all of the optical components
must be placed in an extremely dark enclosure.

Surrounding the optical components are the modulation

and coding hardware. The laser diode is driven by a 256-slot/
word PPM modulator which decides, based on an 8-bit input
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word, which slot the pulse should be placed in and then
provides a current pulse during that slot to turn on the laser.
Obviously, the inverse of this process is applied to the PMT
output to recreate the 8-bit word. To improve the perfor-
mance of the system, an 8-bit Reed-Solomon code is then used
to surround the PPM portion of the system. An 8-bit Reed-
Solomon encoder considers 8-bit segments of the incoming
(binary) data stream as individual (generalized) symbols and
then performs error correction coding over the strings of these
generalized symbols. Since the code symbol size and PPM
word size are matched, PPM word erasures or errors corre-
spond to a single Reed-Solomon code symbol erasures or
errors respectively. Such codes are well known for their burst
erasure fill-in capabilities and, furthermore, can compensate
for combinations of errors and erasures. The data streams
supplied to the encoder and delivered from the decoder are
then compared for an overall bit error rate measurement.

The demonstration program has been divided into four
phases. The first phase involves only the PMT and its asso-
ciated preamplifier and is intended to characterize the dark
current noise distribution of the detection system. This phase
has essentially been completed and the results will be
described in Section IV. In the second phase (currently in
progress) the laser will be added and the optical pulse erasure
and error statistics will be evaluated. The PPM modulator and
demodulator, which have already been designed and fabri-
cated, will be added in phase III so that the PPM word error
and word erasure probabilities can be measured. The final
phase will encompass the coding hardware and will demon-
strate the 2.5-bit performance goal.

lll. Theoretical Analysis of the
Demonstration

In this section we will analyze the performance of the
2.5-bit/detected photon demonstration system. A theoretical
model of a photomultiplier tube and associated preamplifier
was developed in Ref. 10. This model includes the effects of
the photomultiplier tube random gain as well as post PMT
preamplifier noise and is useful for computing communication
system error performance as well as estimating, from experi-
mental data, system parameters such as the PMT dark current.
We will first describe the results in Ref, 10 pertaining to the
model of the PMT gain random variable and the calculation of
its probability density function. Then, using this model we will
determine the detection and false alarm probabilities of a
photocathode electron emission event. These results will be
useful in characterizing both the dark current photoelectron
emission event statistics (phaseI) as well as optical pulse
detection statistics (phase II). Next the pulse detection statis-
tics are used to evaluate the error performance of the PPM




(uncoded) signa] set. Finally, the coded PPM performance will
be analyzed.

A. Random Photomultiplier Tube Gain

In a photomultiplier tube, electrons emitted by the photo-
cathode (either from dark current or photon absorption) are
directed through a series of dynodes by an eleciric field.
Secondary electrons are emitted at each dynode for each
impinging primary electron. The number of secondary elec-
trons at each dynode is a random quantity and results in a
random. overall gain for the PMT. The mean and variance of
this gain can be readily derived. An explicit expression for the
exact probability distribution of the gain, however, is not
available and the problem of determining it appears to be
intractable. Since an analytical expression for this distribution
is required to determine communication system error perfor-
mance, a good approximation of the exact distribution is
useful. In Ref. 10, such an approximation was derived by using
a diffusion model. The approximate density p;(x) of the
random gain G is given by

P (x) = B {S(x) + (%\E_ ) B <2 —é—\"(ﬂ)}
1

where 8(x) is the unit impulse function, 7, (+) is the modified
Bessel function of the first kind,

G

average gain of the photomultiplier tube

v = number of dynode stages
and where the parameter B is specified by G and v according
to

1 _G-1
B2y o @

This approximate density yields the correct mean and variance
for G. In fact, the variance of G is simply given by 2GB. For
the RCA C31034 PMT used in this demonstration G is about
106 and » = 11, so the standard deviation of G is about 0.6G
and B is equal to about one-third of the standard deviation.
Figures 2(a) and 2(b) plot the density of the normalized gain
G/G as given by (1) for the PMT used in the demonstration at
G =106 and 107 respectively. As can be seen from these
figures, the density is not symmetric about the mean and has
substantial probability mass in the region below its mean value
G. This means that there is substantial likelihood that the
photomultiplier output signal level will be lower than the

corresponding average gain value, and error performance calcu-
lations based on a constant gain model will not be accurate.
Also shown in Fig, 2 is a density function that is the positive
truncation of the Gaussian density having the same mean and
variance as p(x). It is clear that using the simpler Gaussian
approximation can produce results that are substantially
optimistic,

B. Photocathode Emission Event Detection: Receiver
Operating Curves

In phase I of the demonstration the number of dark current
emission events at the PMT cathode is experimentally recorded
by monitoring the PMT output with a pulse counter. In Ref.
10, the effects of random PMT gain, thermal noise in the post
PMT preamplifier, and counter response time on successful
photocathode dark current emission event detection were eval-
vated. The PMT anode output is assumed to be terminated by
a resistor of R ohms. The voltage signal S(¢) across this resistor
is amplified and fed into a pulse counter. The amplifier-
counter combination is modeled as an additive thermal noise
V(¢) followed by a short term time averager over T, seconds
(the counter response time). The output of this time averager
is then compared with a threshold 7. An emission event is
recorded by the counter only when the threshold 7y is
exceeded. The entire system is shown in Fig. 3, The additive
thermal noise V(¢) is asswmned to have spectral density

N,y = kiR (volts)?/Hz )

where k = Boltzmann’s constant, 8 = noise equivalent tempera-
ture of the amplifier and R = amplifier equivalent resistance
(assumed to be matched to the anode terminating resistance).
If P, = detection probability of an emission event and Pp=
false alarm probability due to thermal noise, then it is shown
in Ref. 10 that

and
P = 0(L), s)

where p ;(x) is given by (1) and where

= - 1 _12/'2
060 fx TP
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Receiver operating curves of P, versus P, are shown in Fig. 4
for a counter response time T, = 10 ns, thermal noise standard
deviation ¢ = 34 uV and for several values of PMT average gain
G. Also shown on the figure are the corresponding threshold
values.

These curves are useful in interpreting pulse counter data
for the purpose of determining whether the number of dark
current photoelectrons is Poisson distributed. Suppose pulse
counter data is recorded over a period of 1 sec and the counter
response time T, = 10 nsec. Assume that the average gain of
the photomultiplier G = 106 and the PMT is cooled to - 30°C.
With these parameters the RCA C31034 PMT is rated to Have
an average dark current emission rate at the photocathode of
about 25 counts per second. Then under an assumption of
Poisson statistics, the probability of one dark current photo-
electron emission event in an interval of 7', = 10 nsec is about

\, = 25T, = 25X 1077

n

and the probability of no dark current events is approximately
1- A,. The probability that the pulse counter records one
count in a T, sec slot time is then given by

p = NPyt(1-2,) P,

and the probability of no counts is equal to 1 - p. In a 1-sec
observation interval there are n= 1/T, = 108 T,sec slots.
Thus, under a Poisson assumption on the dark current photo-
electron emission statistics, the number of pulse counter
counts in a 1-sec observation period is a binomial (s, p) ran-
dom variable.

Suppose now that the threshold vy is set at 200 uV, o=
34 uV and G = 106, Then the receiver operating curve gives
P,= 091 and Pf= 2 X 10792, Under these conditions np =
n\,P;= 23 when n= 108 >>1. In this case the binomial
(n, p) distribution is approximately Poisson with intensity np,
so the number of recorded pulse counter counts will still be
Poisson even with the random photomultiplier gain and the
amplifier thermal noise taken into account. Next, suppose the
threshold vy is set lower at 100 uV. Here the receiver operating
curve gives Py = 0.962 and Pp= 2 X 1073, In this case np =
nP,=2 X 105 >>1 when n= 108 and the binomial (n, p)
distribution is approximately Gaussian with mean np and
variance np (1 - p). The pulse counter data will no longer be
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Poisson. Therefore, care must be taken in using pulse counter
data for determining counting statistics. Specifically, if the
counter threshold is set too low, the photocathode emission
false alarm rate will be too high and the counter statistics will
be dominated by the thermal (Gaussian) noise of the PMT
preamp.

C. Noise and Signal Pulse Detection: Receiver
Operating Curves

Whereas phase I of this demonstration was concerned with
the dark current statistics of the PMT, in phase II the laser is
added to evaluate the error performance of the PMT-
preamplifier combination in detecting the presence of laser
light excitation. In this demonstration phase, the laser is either
on or off in a time slot of duration T seconds. The PMT
amplifier output is integrated over this time period, normal-
ized by T, and compared to a threshold y. Detection of the
laser light is declared if and only if the threshold is exceeded.
In Ref. 10, the error performance of this detector was evalu-
ated assuming that photocathode emission events are Poisson
distributed and taking into account the random gain density
(1) as well as the preamplifier thermal noise. Specifically,
consider the detector shown in Fig. 5, where the amplifier is
assumed to introduce an additive white Gaussian noise V'(¢)
with spectral density NV, given by (3) to the signal S(¢) across
the anode resistor R. Let

p

s = Pprobability of correctly detecting the presence

of incident laser light 6)

and

n

P

e = probability of correctly detecting the absence

of incident laser light (N

These detection probabilities Py, and P,, depend on the
thermal noise level N, the threshold v, the integration time
T,, and the average gain G and dark current of the PMT, as
well as the incident light intensity at the photocathode. Speci-
fically let

N ., = average number of dark current photocathode
emissions per T sec time period at the photo-
cathode (8)
and

N—s = average number of light-excited photocathode
emission events per T, sec time period

=== ©)




where 7 is the photocathode quantum efficiency, Py is the
incident signal light intensity at the photocathode surface, 4 is
Planck’s constant and f the incident light center frequency.
Also define

and let

—r  n (10)

where

and B is given by (2). It was shown in Ref. 10 that

P, =P R 11
ds (a) °‘=Ns+1_v—n ( )
and
1-P, =P .= (12)
n

Typical on-off puise detection receiver operating curves of
Py, versus 1~ P, are shown in Fig. 6 for integration time
T, = 100 ns, thermal noise standard deviation o, =34 uV and
for several values of N,. Figure 6(a) shows the results for G =
106 and 25 dark current counts/second. Figure 6(b) shows the
corresponding results for G = 3.2 X 106 and 53 dark current

counts/secl.

IThe PMT average gain can be increased by increasing the relative
anode voltage. Gains from 105 to 107 can be produced in this way.
However, increasing the anode voltage results in an increase in the
number of dark current electrons drawn from the photocathode. The
values of dark current used in Fig. 6 correspond to the RCA 31034
PMT operating at -30°C at the various values of gain (see Fig. 12 of
Section IV}.

D. Uncoded PPM Performance

Phase III of the demonstration involves the addition of
pulse position modulation and demodulation equipment to the
optical and elementary electronic signal detection equipment.
In M-ary PPM signaling M adjacent time slots, each of duration
T, sec, are used to form a single PPM symbol. A given T,
second slot is either a “noise slot,” in which case no light is
emitted from the laser diode transmitter, or a ‘“‘signal slot”
when light of a constant intensity is emitted from the laser. In
a PPM symbol time one, and only one, of the slots is a signal
slot and the remaining (M - 1) slots are noise slots. Since the
information to be transmitted is contained in the position (in
time) of the signal slot, each PPM symbol can convey log,M
bits of information (if perfectly detected). In the 2.5-bit/
detected photon demonstration M = 256, but we shall perform
the analysis for arbitrary M.

The PPM demodulator receives signal slot/noise slot deci-
sions over the slot time T from the PMT and light detector
circuit of Fig. 5. Since separate decisions are provided to the
demodulator for each of the M slots in a PPM symbol, a
number of different types of error events are possible. We will
analyze each of these event statistics below,

1. PPM symbol erasure probability. When no signal slot
decisions are received during an entire PPM symbol a symbol
erasure is declared. The probability of this event, Py, is the
probability that the signal slot is not detected and that the
remaining (M - 1) noise slots are correctly classified. In the
notation of Fig. 6,

- M~
Py = (1-P,)PY-1 (13)

which can be easily evaluated given an operating point on that
figure.

2. Undetected PPM symbol error probability. An
undetected symbol error occurs when the signal slot is incor-
rectly declared a noise slot and one (and only one) of the noise
slots is taken as a signal slot. Since the incorrectly detected
noise slot can occur at any one of (M ~ 1) places, the probabil-
ity, P, of an undetected symbol error is

- - - - -2

P, = M-~ 1)1 Pds) (1 P, P, (14)

3. Correct PPM symbol detection probability. When a PPM

symbol is transmitted it will be received correctly if the signal

slot and all of the noise lots are correctly detected. The
probability of this event is

= M-1
P =P, P (15)
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4. Two or more pulse probability. When two or more pulses
are received during a PPM symbol time the demodulator has
conflicting instructions. The probability of this event, P,p is
easily derived as follows:

P,p=Pr (no pulses detected) - Pr (1 pulse detected)
=1-Pp-P -P

= 1-PM1_(f-1)(1-P,)(1-P, )P, (16)

5. Uncoded PPM symbol error probability. The above
events are all measurable during the phase III tests and are
important in determining the overall performance of the sys-
tem when coding is later applied. However, it is also possible
to consider the system as purely an uncoded PPM system
during phase III. If this is to be accomplished then some
resolution of erasures and multiple pulses per symbol time
must be accomplished. A maximum likelihood demodulator
would use the following decision rules:

(1) If all M slots are declared noise slots, choose the trans-
mitted signal slot at random from the M slots.

(2) If exactly k > 1 slots are declared signal slots, choose
the transmitted signal slot at random from among those
k slots.

The actual PPM demodulator does not use these rules.
Whenever an erasure occurs it always selects a preassigned
symbol as its output. Also, if two or more pulses are received
in a symbol time, the output symbol corresponds to the first
detected sighal slot. However, since the transmitted PPM sym-
bols are selected at random and the channel is assumed to be
memoryless, the performance of the actual decoder will be the
same as the maximum likelihood version. We will therefore
analyze the latter.

Since the demodulator always produces an output symbol
then the probability of a symbol error, Py, is 1 minus the
probability of correct symbol detection. (Note that the correct
symbol probability is not P, as developed above. This is
because P, assumes that neither erasures nor multiple pulses
are resolved. P, is therefore only one component in the
uncoded PPM probability of correct symbol detection.) We
have, therefore, that

Py

[

1~ P, (correct symbol detection)

1

M-1_ 1 M1
1- Pds(Pdn) - H (1 - Pds)Pdn
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M-1
1 (M- 1\ opreies .
- Ek+1( k)Pdn (1- P, ) Py (A7)
k=1

where the second term corresponds to P, the third term is the
probability of correct decision when an erasure occurs and the
last term corresponds to the probability of a correct symbol
selection when the actual signal slot and one or more noise
slots are declared signal slots. In the appendix it is shown that
(17) simplifies to

P, (1—1%)

R B Zas \" “an)
Pg=1-7:(1-P MAP) (18)

as) ngl '

6. Uncoded PPM bit error probability. The final quantity
of interest is the probability of a bit error for the uncoded
PPM configuration. Since PPM is a form of orthogonal modula-
tion, the bit error probability P, and the PPM symbol error
probability can be related by

M
P, =(M2_1)PS (19)

During the phase III evaluation P, will be one of the key
performance parameters. Figure 7 shows P, as a function of
the information power efficiency measure p = logzM/N '« (bits/
photon) for several values of the analog detector threshold 1,
M= 256, 0= 34 uV and T,= 100 ns. Figure 7a shows the
result for G = 106 and 25 dark current counts/second whereas
Fig. 7b is for G = 3.2 X 106 and 53 counts/second. Is both
figures the performance improves as the threshold v is reduced
from 250 to 150 uV. This is because the pulse erasure proba-
bility is also decreasing. However, if the threshold is reduced
too far, the noise generated false alarm rate increases, which in
turn increases P,. This effect is evident in the y = 100 uV
curves. Nevertheless, even. with an optimization of the thresh-
old it is clear that without the benefits of the overall coding
system, operation at a reasonable error rate is not possible at
2.5 bits/photon.

E. Coded PPM Performance

In the final demonstration phase, a Reed-Solomon (R-S)
encoder and decoder are used over the PPM modulated chan-
nel. Since the code symbol alphabet size is 8 bits (matched to
the PPM symbol size), the (R-S) code blocklength, N, is 28 -
1= 255 (symbols) (Ref. 11). Two specific codes were consid-
ered for the demonstration. The first is the (255,223), t= 16
error correcting, rate 7/8 (approx.) code. The second is the
(255,191), ¢ = 32 error correcting code which has a rate of
approximately 3/4.




A t error correcting (R-S) code can correct any combina-
tion of # or less symbol errors. It can also compensate for
combinations of errors and erasures. In particular, if s is the
number of decoder input symbol errors and e is the number of
decoder input symbol erasures, then the decoder will produce
the correct output codeword provided

2s+e<d,, 22+l (20)

The code is therefore more powerful at correcting erasures
than errors.

One can easily show that if the confidence that a particular
decoder input symbol is correct is strictly less than 0.5, it is
better to erase the symbol and allow the decoder to attempt to
fill it in. This condition is always satisfied whenever a PPM
erasure occurs or whenever two or more pulses are received in
a PPM symbol time. (The case of two pulses can also result
when the signal slot is not detected and two noise slots are
declared signal slots.) Thus, when (R-S) coding is used, it is
necessary to modify the demodulator decision rules. Toward
this end let us define a decoder input symbol error event to be
the occurrence of an undetected PPM symbol error, and a
decoder input symbol erasure as either a PPM symbol erasure
or the occurrence of two or more pulses in a PPM symbol
time. Then, from Egs. (13 — 16), the probabilities of decoder
input symbol error P, and symbol erasure P, are given by

p, =P, =M-1)(1-PH( —Pdn)pgﬁ-2 (21)

and

P

- - 1_ M~1
e = PotP,, = 1-P,P

ds” dn

- (M- 1)(1—P;s)‘(1—Pdn)P;g-2 =1-P-P_.
(22)

Once we have P, and P, we can compute the decoder
output performance. A (R-S) decoder will always produce the
correct codeword at the output whenever the error/erasure
capability of the code (Eq. 20) is satisfied. When this condi-
tion is not satisfied the decoder finds that it cannot solve the
equations which determine the location of the codeword sym-
bol errors nor can it solve for the values of the erased symbols.
Consequently, a decoding (computational) failure results. The
codes copsidered are systematic, which means that each code-
word is made up of 255-2¢ encoder input information symbols
followed by 2t generalized parity symbols (which are com-
puted in the encoder). When a decoding failure occurs, the
decoder will output the systematic portion of the codeword.

This means that for that particular codeword the power of the
code is not (actually cannot be) used, but the uncoded portion
of the codeword is still more likely to be correct than a
randomly selected codeword.

The probability that the incorrect codeword is selected by
the decoder, Py, can be written by inspection as

i—s

s S 2 (V) () 2z, -p

§=0 e=A
(23)

where -~

A= max(d . - 2s,0).

min
The argument of the summation in (23) is recognized as the
probability that a received codeword contains s symbol errors,
¢ erasures and the remaining N-s-e symbols are error- and
erasure-free. The summation is then taken over all values of s
and e which violate Eq. (20). The symbol = is used since (23)
is actually a slight overbound. This is because there is some
chance (albeit extremely small) that, even though (20) is
violated, the systematic portion of the codeword is received
without error.

The probability of a decoder output symbol error Pgg can
now be computed by assuming that when s and e errors and
erasures respectively occur in a codeword, they are statistically
spread uniformly over the V codeword symbols. Then assum-
ing that all symbol erasures are (pessimistically) resolved in
error at the decoder output gives

s E ()

§=0 e=A
. _p -p W-se[Ste
Ps P (1-P,-P,) H(N)
4

Given Pgg we can also compute Pgp, the decoder output bit
error rate from the expression

_ M
Pop = T Py (25)
Equation (25) is the final performance measure for the
2.5-bit/detected photon demonstration. Figure 8 shows Ppp as
a function of the energy efficiency parameter p for a PMT gain
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of 3.2 X 106, 53 dark counts/second, T, = 100 ns and several
values of pulse detector threshold voltage v. Figure 8(a) illus-
trates the performance of the rate 7/8 code whereas Fig. 8(b)
applies to the rate 3/4 code. It is clear from these figures that
the rate 7/8 code will not produce an adequate bit error rate at
p = 2.5 bits/photon. The rate 3/4 code, on the other hand,
provides Voyager threshold performance up to 2.9 bits/photon
for y =150 uVv.

The corresponding performance curves for a PMT gain of
106 were not computed since it was recognized that they
would not provide adequate performance. This can be seen
from the following analysis. From Fig. 7(a) we see that the
uncoded PPM bit error rate at p = 2.5 bits/photon and a PMT
gain of 106 is greater than 0.15 for all values of 7. From (19)
this corresponds to a PPM symbol error rate of 0.3, which
results from undetected symbol errors and incorrectly resolved
ambiguities. This implies that on the average a (R-S) codeword
of length 255 will have 76 anomalies, either symbol errors or
erasures. Since this number exceeds the code correction capa-
bilities (Eq. 20) of both codes even if all anomalies are era-
sures, the coded performance will obviously bé inadequate.
Contrast this with the 3.2 X 106 gain results of Fig. 7(b). At
p=2.5 and y= 150 uV the average number of anomalies per
codeword is 20. This satisfies Eq. (20) for the rate 7/8 code
only if most are erasures. For the rate 3/4 code, however, (20)
is satisfied on the average regardless of whether the anomalies
are erasures or errors.

One additional comment is in order. The demonstration
goal is to achieve 2.5-bit/detected photon performance ar 100
kbps. The performance calculations in this section were made
for T, = 100 ns, which corresponds to the maximum clock rate
of the logic used in the hardware. For 256-ary PPM and rate
3/4 coding, these results correspond to 234 kbps.

IV. Experimental Results of Phase |
A. Experimental Setup and Conditions

As described earlier, the purpose of this phase of the work
was to measure the intrinsic noise characteristics of the system
and to verify the theory used to model it.

The block diagram of the experimental setup is shown in
Fig. 9. The photomultiplier tube (PMT) used in the experi-
ment was the RCA model C31034. This PMT has a GaAs
photocathode with the highest quantum efficiency available at
the wavelength region where AlGaAs lasers operate (0.8-
0.9 um). This particular PMT type has a quantum efficiency
(n) of about 15% at 0.85 um. A selected type of this PMT —
Model C31034A-02 — with 5= 20% was also purchased but
was not used in the experiment. The above efficiency values
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are at room temperature, and a moderate improvement is
obtained with some cooling. The typical gain of this PMT is
106, The gain varies with varying experimental conditions, as
will be described below.

Since the dark current of the PMT is too high at room
temperature, the PMT was placed in a cooled housing. The
cooling reduces the thermionic emission from the PMT’s
photocathode, which is a dominant noise mechanism. The
thermoelectric (T.E.) cooler used was a Model TE-206TS-RF
(Products for Research, Inc.), which can cool the photo-
cathode to a temperature 60 K lower than room temperature.
Due to other noise mechanisms (Ref. 12), some temperature-
independent residual dark current was observed below about
-30°C. The high voltage (1200-1800V) is supplied to the PMT
by a Model 204-10 power supply (Pacific Photometric
Instruments).

The output of the PMT was directly connected to a fast
preamplifier Model 9301 (ORTEC). This amplifier has a gain
of 10, bandwidth of 150 MHz and equivalent input noise
voltage of about 34 uV rms.

The PMT and preamplifier (which must be in close proxim-
ity because of noise considerations) were placed in a dark
enclosure to eliminate ambient illumination and permit the
observation of the actual PMT and preamp noise mechanisms.
The effectiveness of the enclosure was verified by noting that
no change in the dark count reading resulted when the labora-
tory was darkened or fully illuminated. Following the pre-
amplifier was a second amplifier (HP Model 461) which pro-
vided final pulse gain (gain: X100, bandwidth: 150 MHz).

The amplified signal was first fed to a fast storage oscillo-
scope (Tektronix 7834) to verify that the PMT noise output
was generated by single photocathode emission events, not
bursts of events (Ref. 13). In all subsequent tests the amplified
signal was connected to a HP5370A universal counter, which
in turn was connected to a HP9845C computing controller
through an HP-IB interface.

In the course of the measurements there were basically
three parameters that could be changed: The temperature of
the photocathode, the PMT voltage and the threshold (or
trigger) level of the counter. Changing the temperature alters
the intensity of the noise process, i.e., the number of photo-
electrons released from the photocathode via thermionic emis-
sion (Ref. 14). Changing the PMT voltage ¥V changes the
average gain G of the PMT according to

G = qV?




where V is in kilovolts, G is in units of 106 and where ¢ ~
0.043 and b~ 9.22 are constants calculated from the manu-
facturer’s data sheet. Finally, changing the threshold level
changes both the intensity of the dark current counts and their
origin. At low threshold voltages most of the counts are due to
white (Gaussian) thermal noise of the preamplifier; at higher
values of threshold voltages the dominant noise mechanism is
due to the dark counts originating at the PMT.

Several limitations on the measurements are imposed due to
hardware constraints. First, the bandwidth of the preampli-
fier-amplifier combination is slightly less than 110 MHz; this
matches the 100-MHz capability of the counter, but is some-
what less than the 140-MHz intrinsic bandwidth of the PMT.
Secondly, when the counter operates in the time interval mode
(as needed for the time-of-arrival distribution measurement), it
counts only every other interval and, in addition, has a 330-us
deadtime after each measurement. This limitation is not signif-
icant if we assume that the process is stationary and when
operating in the Poisson regime, but for low values of thresh-
old voltage, only the frequency mode of the counter can be
used in order to obtain reliable results.

B. Experimental Results

The first experiment set was designed to test the validity of
the assumption that the dark count events are generated by a
Poisson process. To eliminate counts due to preamplifier ther-
mal noise the counter threshold voltage was set at the 9o level
of the thermal process. A sample set of 1000 count events was
then observed and compared in two ways against theoretical
predictions. The first comparison involved the computation of
the number of events in a preset time interval to verify that it
was Poisson distributed. The second involved computation of
the event interarrival times to determine if they were exponen-
tially distributed. Typical experimental results are shown in
Fig. 10 along with the associated theoretical distributions.
Figure 10(a) shows the frequency distribution (variation in the
number of counts per time interval), whereas Fig. 10(b) con-
tains the interarrival time distributions. The results show
extremely good agreement between theory and experiment.
Additionally, two x-square tests appropriate for the compari-
sons of these distributions were computed. These tests con-
firmed the visual conclusions that the theoretical and experi-
mental distributions were close. Similar results were obtained
for several different values of PMT gains.

Measurements were also made at lower values of the
counter threshold voltage. Here, as expected, the measured
distributions deviated considerably from the Poisson model
due to the increased number of counts resulting from pre-
amplifier thermal noise.

The second experiment set involved taking extensive data
to determine the average intensity of the dark current Poisson
process, as well as its variation with system parameters. First,
the dependence of the dark current intensity on PMT tempera-
ture was measured and compared with the manufacturer’s
specifications. Favorable agreement was obtained which pro-
vided confidence that the experimental setup was performing
correctly. Then, the effects of PMT gain and counter threshold
voltage on the dark current intensity were measured. To
obtain reliable results, 104 seconds of data were collected for
each gain and threshold setting. The results are shown in Fig.
11. As expected, the average intensity of noise events
decreases with an increase in the counter threshold voltage,

Another important feature of Fig. 11 is the rather large
dependence of the dark current intensity on the PMT gain
setting. This phenomenon is due to the fact that as the voltage
of each dynode is increased, the PMT enters an unstable region
produced by regenerative ionization effects (Ref. 12). It is
important that this variation be adequately modeled so that
optimized systems designs can be obtained. However, the data
of Fig. 11 includes not only the effects of the PMT but the
preamplifier and counter threshold as well. By modeling the
overall process and working backward from the experimental
results one can deduce the intrinsic variation in PMT dark
current intensity as a function of PMT gain. This result is
shown in Fig. 12. The figure clearly indicates an exponential
dark current dependence on average gain.

V. Conclusions

We have described the 2.5-bit/detected photon demonstra-
tion program and identified how it has been broken into four
demonstration phases. Then an analysis of each phase was
presented. The analysis illustrated how, with 256-ary PPM
modulation, Reed-Solomon coding and carefully chosen sys-
tem parameters, it is possible to achieve the 2.5-bit/detected
photon goal at rates above 100 kbps. Finally, the results of the
phase I experiments were presented where the agreement
between theory and experiment was shown to be surprisingly
close. Additionally, the parametric dependencies of the PMT
detection noise intensities were also experimentally
determined.

The agreement in the phase I tests provides a substantial
amount of credibility to the analysis and associated conclu-
sions presented herein. However, the final proof will come
with the actual phase IV demonstration. Nevertheless, the
results of phase I will permit the phase II-IV activities to be
conducted with increased optimism.
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Appendix

In Section III we found that the uncoded PPM symbol error
probability was given by (Eq. 17)

- M-1_ L M-1
Py = 1- Py )" - M (1= Py) Py,
M-1
1 (M- 1\ M- k
B Z k+1( k )Pdn (1~ P,,)" Py (A1)
k=1

Combining the second and fourth terms and changing the
index of summation yields

PM—I

_ 1
- 1_"M"(1" as) Pan

M
1 (M-1 g
- E 76—(]6— > PM - (I_Pdn)k 1Pds
k=1
Then multiplying and dividing the last term by M (1- Pg,,)
produces
= 1o M=1
Py =1 (1 ds)Pdn
M
M-k (1 _ pk
M(l—Pd ) Z ( ) Paw w (A= Py)
n’ g=
1- pPM
IS S M-1 _ ds( dn
1 i (a-p,)P,, MI-F) ) (A-2)
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which is the desired result.

That this expression is correct can be seen from the follow-
ing analysis.? The second term is clearly the probability of
making a correct symbol decision when a PPM symbol erasure
occurs (cf Eq. 13). The last term of equation (A-2) must
therefore be the probability of correct decision when one or
more pulses occur in the PPM symbol. Let us hypothesize a
different demodulator decision rule. We will assume that era-
sures are still resolved by the roll of an M-sided die, but that in
the event of one or more pulses in a symbol time, the first
pulse is always taken as correct. This demodulation rule is
really equivalent to the maximum-ikelihood decision rule
when the inputs to the demodulator are equally likely and one
is interested in average probability of error. (Note: the actual
demodulator uses a modified form of this rule.) For this new
demodulator the probability of correct symbol decision given
that the actual signal slot was the first slot is Py. The proba-
bility of correct decision given the second slot was actually
sent is likewise Py, P, . Continuing on in this manner and
using the fact that each of the conditions has equal chance of
occurring results in

P, (correct decision and one or more pulse received)

2 M1
(P + Pands + Pd Pds Foeed Pds Pds)

This clearly equals the last term of Eq. (A-2).

2The authors are indebted to R. Stokey for this interpretation.




